2010 Q13

13. Given \(y = t^3 - \frac{5}{2} t^2 \) and \(x = \sqrt{t} \) for \(t > 0 \), use parametric differentiation to express \(\frac{dy}{dx} \) in terms of \(t \) in simplified form.

Show that \(\frac{d^2 y}{dx^2} = at^2 + bt \), determining the values of the constants \(a \) and \(b \).

Obtain an equation for the tangent to the curve which passes through the point of inflexion.

Answers

\[
\frac{dy}{dt} = 6t^2 - 10t^\frac{3}{2}
\]

\(a = 30, \quad b = -30 \)

\(2y + 8x = 5 \)