12. The first two terms of a geometric sequence are \(a_1 = p \) and \(a_2 = p^2 \). Obtain expressions for \(S_n \) and \(S_{2n} \) in terms of \(p \), where \(S_k = \sum_{j=1}^{k} a_j \).

Given that \(S_{2n} = 65S_n \) show that \(p^n = 64 \).

Given also that \(a_3 = 2p \) and that \(p > 0 \), obtain the exact value of \(p \) and hence the value of \(n \).

Answers

\[
S_n = \frac{p(p^n - 1)}{p - 1} \quad \quad S_{2n} = \frac{p(p^{2n} - 1)}{p - 1}
\]

\(p = \sqrt{2} \)

\(n = 12 \)