15. Lines L_1 and L_2 are given by the parametric equations

$$L_1 : x = 2 + s, \ y = -s, \ z = 2 - s \quad L_2 : x = -1 - 2t, \ y = t, \ z = 2 + 3t.$$

(a) Show that L_1 and L_2 do not intersect.

(b) The line L_3 passes through the point $P(1, 1, 3)$ and its direction is perpendicular to the directions of both L_1 and L_2. Obtain parametric equations for L_3.

(c) Find the coordinates of the point Q where L_3 and L_2 intersect and verify that P lies on L_1.

(d) PQ is the shortest distance between the lines L_1 and L_2. Calculate PQ.

Answers

See over the page
Answers

(a) Equating the \(x \)-coordinates: \(2 + s = -1 - 2t \) \(\Rightarrow \ s + 2t = -3 \) (1)
Equating the \(y \)-coordinates: \(-s = t \) \(\Rightarrow \ s = -t \)
Substituting in (1): \(-t + 2t = -3 \) \(\Rightarrow \ t = -3 \) \(\Rightarrow \ s = 3 \).
Putting \(s = 3 \) in \(L_1 \) gives \((5, -3, -1) \) and \(t = -3 \) in \(L_2 \), \((5, -3, -7) \).
As the \(z \) coordinates differ, \(L_1 \) and \(L_2 \) do not intersect.

(b) Directions of \(L_1 \) and \(L_2 \) are: \(\mathbf{i} - \mathbf{j} - \mathbf{k} \) and \(-2\mathbf{i} + \mathbf{j} + 3\mathbf{k} \). The vector product of these gives the direction of \(L_3 \).

\[
(i - j - k) \times (-2i + j + 3k) = \begin{vmatrix} i & j & k \\ 1 & -1 & -1 \\ -2 & 1 & 3 \end{vmatrix} = -2i - j - k
\]
Equation of \(L_3 \):

\[
\mathbf{r} = \mathbf{i} + \mathbf{j} + 3\mathbf{k} + (-2\mathbf{i} - \mathbf{j} - \mathbf{k})u = (1 - 2u)\mathbf{i} + (1 - u)\mathbf{j} + (3 - u)\mathbf{k}
\]
Hence \(L_3 \) is given by \(x = 1 - 2u, y = 1 - u, z = 3 - u \).

(c) Solving the \(x \) and \(y \) coordinates of \(L_3 \) and \(L_2 \):

\[-1 - 2t = 1 - 2u \text{ and } t = 1 - u \Rightarrow -1 = 3 - 4u \Rightarrow u = 1 \text{ and } t = 0 \]
The point of intersection, \(Q \), is \((-1, 0, 2)\) since \(2 + 3t = 2 \) and \(3 - u = 2 \).
\(L_1 \) is \(x = 2 + s, y = -s, z = 2 - s \). When \(x = 1, s = -1 \) and hence \(y = 1 \) and \(z = 3 \), i.e. \(P \) lies on \(L_1 \).

(d) \(PQ = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6} \).