Vectors
AH Maths Exam Questions

Source: 2019 Specimen P2 Q13 AH Maths

(1)	A line, L, has equation $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z}{-1}$.
	(a) Find the Cartesian equation of the plane, perpendicular to the line L, which passes through the point P(1,1,0).
	(b) Find the shortest distance from P to L and explain why this is the shortest distance.

Source: 2019 Q15 AH Maths

(2)	The equations of two planes are given below.
	π_1: $2x - 3y - z = 9$
	π_2: $x + y - 3z = 2$
	(a) Verify that the line of intersection, L_1, of these two planes has parametric equations $x = 2\lambda + 3$, $y = \lambda - 1$, $z = \lambda$.
	(b) Let π_3 be the plane with equation $-2x + 4y + 3z = 4$. Calculate the acute angle between the line L_1 and the plane π_3.
	(c) L_2 is the line perpendicular to π_3 passing through P(1, 3, -2). Determine whether or not L_1 and L_2 intersect.
Planes π_1, π_2 and π_3 have equations:

- π_1: $x - 2y + z = -4$
- π_2: $3x - 5y - 2z = 1$
- π_3: $-7x + 11y + az = -11$

where $a \in \mathbb{R}$.

(a) Use Gaussian elimination to find the value of a such that the intersection of the planes π_1, π_2 and π_3 is a line.

(b) Find the equation of the line of intersection of the planes when a takes this value.

The plane π_4 has equation $-9x + 15y + 6z = 20$.

(c) Find the acute angle between π_1 and π_4.

(d) Describe the geometrical relationship between π_2 and π_4.

Justify your answer.

(a) A beam of light passes through the points $B(7, 8, 1)$ and $T(-3, -22, 6)$.

Obtain parametric equations of the line representing the beam of light.

(b) A sheet of metal is represented by a plane containing the points $P(2, 1, 9)$, $Q(1, 2, 7)$ and $R(-3, 7, 1)$.

Find the Cartesian equation of the plane.

(c) The beam of light passes through a hole in the metal at point H.

Find the coordinates of H.
Source: 2016 Q14 AH Maths

| (5) | Two lines L_1 and L_2 are given by the equations:

$$L_1: \quad x = 4 + 3\lambda, \quad y = 2 + 4\lambda, \quad z = -7\lambda$$

$$L_2: \quad \frac{x-3}{-2} = \frac{y-8}{1} = \frac{z+1}{3}$$

(a) Show that the lines L_1 and L_2 intersect and find the point of intersection

(b) Calculate the obtuse angle between the lines L_1 and L_2. |

Source: 2015 Q15 AH Maths

| (6) | A line, L_1, passes through the point P(2, 4, 1) and is parallel to

$$\mathbf{u}_1 = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$$

and a second line, L_2, passes through Q(−5, 2, 5) and is parallel to

$$\mathbf{u}_2 = -4\mathbf{i} + 4\mathbf{j} + \mathbf{k}.$$

(a) Write down the vector equations for L_1 and L_2.

(b) Show that the lines L_1 and L_2 intersect and find the point of intersection.

(c) Determine the equation of the plane containing L_1 and L_2. |
2014 Q5 AH Maths

| (7) | Three vectors \vec{OA}, \vec{OB} and \vec{OC} are given by \mathbf{u}, \mathbf{v} and \mathbf{w} where $\mathbf{u} = 5\mathbf{i} + 13\mathbf{j}$, $\mathbf{v} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$, $\mathbf{w} = \mathbf{i} + 4\mathbf{j} - \mathbf{k}$. Calculate $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$. Interpret your result geometrically. |

2013 Q15 AH Maths

| (8) | (a) Find an equation of the plane π_1, through the points $A(0, -1, 3)$, $B(1, 0, 3)$ and $C(0, 0, 5)$.

(b) π_2 is the plane through A with normal in the direction $-\mathbf{j} + \mathbf{k}$. Find an equation of the plane π_2.

(c) Determine the acute angle between planes π_1 and π_2. |

2012 Q5 AH Maths

| (9) | Obtain an equation for the plane passing through the points $P(-2, 1, -1)$, $Q(1, 2, 3)$ and $R(3, 0, 1)$. |
The lines L_1 and L_2 are given by the equations

$$\frac{x - 1}{k} = \frac{y}{-1} = \frac{z + 3}{1} \quad \text{and} \quad \frac{x - 4}{1} = \frac{y + 3}{1} = \frac{z + 3}{2},$$

respectively.

Find:

(a) the value of k for which L_1 and L_2 intersect and the point of intersection;

(b) the acute angle between L_1 and L_2.

Given $\mathbf{u} = -2\mathbf{i} + 5\mathbf{k}$, $\mathbf{v} = 3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{w} = -\mathbf{i} + \mathbf{j} + 4\mathbf{k}$.

Calculate $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.

(a) Use Gaussian elimination to solve the following system of equations

$$x + y - z = 6$$
$$2x - 3y + 2z = 2$$
$$-5x + 2y - 4z = 1.$$

(b) Show that the line of intersection, L, of the planes $x + y - z = 6$ and $2x - 3y + 2z = 2$ has parametric equations

$$x = \lambda$$
$$y = 4\lambda - 14$$
$$z = 5\lambda - 20.$$

(c) Find the acute angle between line L and the plane $-5x + 2y - 4z = 1$.

Source: 2008 Q14 AH Maths

| (13) | (a) Find an equation of the plane π_1 through the points $A(1, 1, 1)$, $B(2, -1, 1)$ and $C(0, 3, 3)$.
(b) The plane π_2 has equation $x + 3y - z = 2$. Given that the point $(0, a, b)$ lies on both the planes π_1 and π_2, find the values of a and b. Hence find an equation of the line of intersection of the planes π_1 and π_2.
(c) Find the size of the acute angle between the planes π_1 and π_2. |

Source: 2007 Q15 AH Maths

| (14) | Lines L_1 and L_2 are given by the parametric equations
$L_1 : x = 2 + s, y = -s, z = 2 - s$
$L_2 : x = -1 - 2t, y = t, z = 2 + 3t$.
(a) Show that L_1 and L_2 do not intersect.
(b) The line L_3 passes through the point $P(1, 1, 3)$ and its direction is perpendicular to the directions of both L_1 and L_2. Obtain parametric equations for L_3.
(c) Find the coordinates of the point Q where L_3 and L_2 intersect and verify that P lies on L_1.
(d) PQ is the shortest distance between the lines L_1 and L_2. Calculate PQ. |