Differentiation

AH Maths Exam Questions

Source: 2019 Specimen P1 Q2 AH Maths

(1) Given \(f(x) = 2x \tan x \), where \(0 < x < \frac{\pi}{2} \), obtain \(f'' \left(\frac{\pi}{4} \right) \).

Source: 2019 Q1a,b AH Maths

(2) (a) Differentiate \(f(x) = x^6 \cot 5x \).

(b) Given \(y = \frac{2x^3 + 1}{x^3 - 4} \), find \(\frac{dy}{dx} \). Simplify your answer.

(c) For \(f(x) = \cos^{-1} 2x \) evaluate \(f' \left(\frac{\sqrt{3}}{4} \right) \).

Source: 2019 Q6 AH Maths

(3) A spherical balloon of radius \(r \) cm, \(r > 0 \), deflects at a constant rate of \(60 \text{ cm}^3 \text{s}^{-1} \). Calculate the rate of change of the radius with respect to time when \(r = 3 \).

\[
\text{The volume of a sphere is given by } V = \frac{4}{3} \pi r^3.
\]
(4)
(a) Given \(f(x) = \sin^{-1} 3x \), find \(f'(x) \).
(b) Differentiate \(y = \frac{e^{5x}}{7x + 1} \).
(c) For \(y \cos x + y^2 = 6x \), use implicit differentiation to find \(\frac{dy}{dx} \).

(5)
On a suitable domain, a function is defined by \(f(x) = \frac{e^{x^2-1}}{x^2-1} \).

Find \(f''(x) \), simplifying your answer.

(6)
(a) Differentiate \(y = x \tan^{-1} 2x \).
(b) Given \(f(x) = \frac{1-x^2}{1+4x^2} \), find \(f'(x) \), simplifying your answer.
(c) A curve is given by the parametric equations \(x = 6t \) and \(y = 1 - \cos t \).

Find \(\frac{dy}{dx} \) in terms of \(t \).
Source: 2015 Q2 AH Maths

<table>
<thead>
<tr>
<th>(7)</th>
</tr>
</thead>
</table>
| (a) For $y = \frac{5x + 1}{x^2 + 2}$, find $\frac{dy}{dx}$. Express your answer as a single, simplified fraction.

(b) Given $f(x) = e^{2x}\sin^2 3x$, obtain $f'(x)$. |

Source: 2014 Q1 AH Maths

<table>
<thead>
<tr>
<th>(8)</th>
</tr>
</thead>
</table>
| (a) Given

$$f(x) = \frac{x^2 - 1}{x^2 + 1},$$

obtain $f'(x)$ and simplify your answer.

(b) Differentiate $y = \tan^{-1}(3x^2)$. |

Source: 2014 Q13 AH Maths

<table>
<thead>
<tr>
<th>(9)</th>
</tr>
</thead>
</table>
| The fuel efficiency, F, in km per litre, of a vehicle varies with its speed, s km per hour, and for a particular vehicle the relationship is thought to be

$$F = 15 + e^x(\sin x - \cos x - \sqrt{2}),$$

where $x = \frac{\pi(s - 40)}{80}$,

for speeds in the range $40 \leq s \leq 120$ km per hour.

What is the greatest and least efficiency over the range and at what speeds do they occur? |
Source: 2013 Q2 AH Maths

(10) Differentiate \(f(x) = e^{\cos x} \sin^2 x \).

Source: 2012 Q1 AH Maths

(11)

(a) Given \(f(x) = \frac{3x+1}{x^2+1} \), obtain \(f'(x) \).

(b) Let \(g(x) = \cos^2 x \exp (\tan x) \). Obtain an expression for \(g'(x) \) and simplify your answer.

Source: 2011 Q7 AH Maths

(12) A curve is defined by the equation \(y = \frac{e^{\sin x} (2 + x)^3}{\sqrt{1-x}} \) for \(x < 1 \). Calculate the gradient of the curve when \(x = 0 \).

Source: 2010 Q1 AH Maths

(13) Differentiate the following functions.

(a) \(f(x) = e^x \sin x^2 \).

(b) \(g(x) = \frac{x^3}{1 + \tan x} \).
Source: 2009 Q1a AH Maths

(14) Given $f(x) = (x + 1)(x - 2)^3$, obtain the values of x for which $f'(x) = 0$.

(b) Calculate the gradient of the curve defined by $\frac{x^2}{y} + x = y - 5$ at the point $(3, -1)$.

Source: 2008 Q10 AH Maths

(15) A body moves along a straight line with velocity $v = t^3 - 12t^2 + 32t$ at time t.

(a) Obtain the value of its acceleration when $t = 0$.

(b) At time $t = 0$, the body is at the origin O. Obtain a formula for the displacement of the body at time t.

Show that the body returns to O, and obtain the time, T, when this happens.

Source: 2008 Q15 AH Maths

(16) Let $f(x) = \frac{x}{\ln x}$ for $x > 1$.

(a) Derive expressions for $f''(x)$ and $f'''(x)$, simplifying your answers.

(b) Obtain the coordinates and nature of the stationary point of the curve $y = f(x)$.

(c) Obtain the coordinates of the point of inflexion.

Source: 2007 Q2 AH Maths

(17) Obtain the derivative of each of the following functions:

(a) $f(x) = \exp (\sin 2x)$;

(b) $y = 4^{(x^2 + 1)}$.