16. Planes π_1, π_2 and π_3 have equations:

\[
\begin{align*}
\pi_1 &: \quad x - 2y + z = -4 \\
\pi_2 &: \quad 3x - 5y - 2z = 1 \\
\pi_3 &: \quad -7x + 11y + az = -11
\end{align*}
\]

where $a \in \mathbb{R}$.

(a) Use Gaussian elimination to find the value of a such that the intersection of the planes π_1, π_2 and π_3 is a line.

(b) Find the equation of the line of intersection of the planes when a takes this value.

The plane π_4 has equation $-9x + 15y + 6z = 20$.

(c) Find the acute angle between π_1 and π_4.

(d) Describe the geometrical relationship between π_2 and π_4.

Justify your answer.

Answers

(a) $a = 8$
(b) $x = 22 + 9t, y = 13 + 5t, z = 2$
(c) 0.75
(d) Planes π_2 and π_4 are parallel because the normal of π_4 is a multiple of the normal π_2