13. A line, \(L \), has equation \(\frac{x+1}{2} = \frac{y-2}{1} = \frac{z}{-1} \).

(a) Find the Cartesian equation of the plane, perpendicular to the line \(L \), which passes through the point \(P(1,1,0) \).

(b) Find the shortest distance from \(P \) to \(L \) and explain why this is the shortest distance.
<table>
<thead>
<tr>
<th>Question</th>
<th>Generic scheme</th>
<th>Illustrative scheme</th>
<th>Max mark</th>
</tr>
</thead>
</table>
| 13. (a) | •¹ find normal vector
•² substitute into equation of the plane
•³ find the equation of plane | •¹ $2i + j - k$
•² $2x + y - z = d$
•³ $2x + y - z = 3$ | 3 |
| (b) | •⁴ find parametric equations for the line
•⁵ substitute into equation of plane
•⁶ solve for t
•⁷ calculate coordinates
•⁸ components of PQ
•⁹ find shortest distance
•¹⁰ explanation | •⁴ $x = -1 + 2t$, $y = 2 + t$, $z = -t$
•⁵ $2(-1 + 2t) + (2 + t) - (-t) = 3$
•⁶ $\frac{1}{2}$
•⁷ $(0, \frac{5}{2} - \frac{1}{2})$
•⁸ \[
\begin{bmatrix}
1 \\
3 \\
-1 \\
\end{bmatrix} \\
\begin{bmatrix}
\frac{3}{2} \\
\frac{1}{2} \\
\end{bmatrix}
\]
•⁹ $\sqrt{7}$
•¹⁰ PQ is perpendicular to L. | 7 |